Uncertain Delay

Designed for system G(s), but system in real-world G’(s) = G(s)e™*®
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- Impact of delay : Phase delay of —w
- Original system is stable, delayed system is not
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Example - Uncertain Gain

Design for system G(s), but in real-world we get G'(s) = aG(s)
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‘\\ Re(G(s)

- Impact of uncertain gain : Scaling
- Original system is stable, system with larger gain is not
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- Impact of uncertain gain : Scaling
- Original system is stable, system with larger gain is not

Robustness

The idea: The farther the ‘nominal’ Nyquist curve is from the —1 point, the more
likely the real system will be stable.

The various margins measure distance in terms of some common terms:

- Uncertain gain
- Uncertain phase

- Uncertain delay



The gain margin is the number 1/a, where - Expressed in decibels The phase margin ¢ is the smallest increase in Usually expressed in degrees

phase that will cause instability - Between 30° and 60°

—20logpa >0 .
generally considered safe

a= mwin K(jw)G(jw)

st Im K (jw)G(jw) = 0 - Amount that gain can ¢:I},{EI¢
increase while stable st K(jw)G(jw)e’® = —1
i.e.,, smallest negative crossing of the real axis . Between 4dB and 12dB
generally considered safe ol
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Phase and Gain Margin on Bode Plot

Magnitude (dB)

Phase (deg)
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Example: AFM

1.5

8.88 - 10%(s® + 780s + 1.69 - 10°)

G(s) =

K(s) =K - (1+

(s + 3000)(s + 1000)(s + 100)(s2 + 505 + 6.25 - 106)

;)

Phase and Gain Margin on Bode Plot

Procedure:

1. Find frequency w. that system passes 0dB, from magnitude plot
2. Find frequency w, that system passes —180°, from the phase plot
3. Gain margin = —201log,, | K (jw.)G(jw.)|dB

4. Phase margin = ZK (jw.)G(jw.) — 180 in degrees

Gain and phase margin positive — stable

8
Example: AFM

8.88 - 10%(s® + 780s + 1.69 - 10°)
(54 3000)(s 4 1000)(s + 100)(s2 + 50s + 6.25 - 105)

K(s)= K- (1+§>

G(s) =
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Example: AFM
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K(s):K~(1+%)
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Example: AFM

8.88 - 105(s? + 780s + 1.69 - 10°)
(5 +3000)(s 4 1000)(s + 100)(s2 + 50s + 6.25 - 106)

K(s):K-(lJr%)

G(s) =

Example: AFM
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Example: AFM

8.88 - 10%(s® + 780s + 1.69 - 10°)
(5 4 3000)(s 4 1000)(s 4 100)(s2 + 50s + 6.25 - 10°)

K(s)=K - (1+§>

G(s) =

ol

Time (s)

System becomes unstable somewhere between K = 3 and K = 3.05



Gain and Phase Margins : Nyquist
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Gain and Phase Margins : Nyquist

Re[G()]

-2

—1.5

Gain margin = —201log,, a = 9.63dB
System becomes unstable at a gain of 1/a = 3.03
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Gain and Phase Margins : Nyquist
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Phase margin = 108 degrees



Gain and Phase Margins : Bode Gain and Phase Margins : Bode
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Choose the ‘first to be unstable’ if there are multiple crossings

Margins - Summary

- Margins measure how far from stability the closed-loop system is in terms of a
single uncertain parameter

- Phase
- Gain
- Delay

- Many applications specify minimum phase and gain margins for safety

- In later lectures we will look at dynamic controllers that shape the frequency

. Steady State Errors
response so that we have good margins



Steady-State Offset

3.4
- > =1
)= m K(s)
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1 /‘\\/\ Closed-loop step response
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0 | | | | |
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Steady-State Offset

e LIS By

Final Value Theorem
tlim w(t) = lir% sW (s)
If poles of sW(s) are in the left half plane

Ifr(t) = 1,¢ > 0, then R(S) = 1/s
1

lim e(t) = lim s = lll}r}) m

1
t—00 s=0 14+ K(s)G(s) s

- Not infinite because K (s)G(s) # —1
- Called this the steady-state offset or steady-state error
- Conditions for the steady-state offset to be zero?

=777

Steady-State Offset
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/\\/\ Closed-loop step response
/[ S
A% 4 6 Error—yg 10
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Stable does not mean that the output tracks the reference!
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System Type and Open-Loop Steady-State Gain

Suppose that the open-loop transfer function has ¢ poles at s = 0

B(s)
s9A(s)

K(s)G(s) =

where A and B are polynomials.

The number g is called the type or the class of the open-loop system.

The open-loop steady-state gain of the system K (s)G(s) is



Type 0 System Response to a Step Command

Suppose we have a type 0 system

and we apply a step input

Type 1 System Response to a Step Command

Suppose we have a type 1 system

and we apply a step input

Type 0 System Response to a Step Command

Suppose we have a type 0 system

K(s)G(s) = ig

and we apply a step input

The steady-state error for the closed-loop system will be

lim e(t) = lim 9; A
t—o0 s=0 1+ K(s)G(s) s
1
T 1+

Type 1 System Response to a Step Command

Suppose we have a type 1 system

K(s)G(s) = i(é))

and we apply a step input

The steady-state error for the closed-loop system will be

lim e(t) = lims——— . %
e T T K(5)G(s) s
= lim —>

=0

The steady-state error will be zero for all step inputs and systems!



Type 1 System Response to a Step Command Type 1 System Response to a Ramp Command

Suppose we have a type 1 system

1 1 5
k=5 (1+3) KOG = 330

15 : ‘ ‘ : and we apply a ramp input r(t) =t

Closed-loop step response

R(s) = L
' /\ / §2

0.5 .
Error
0 | | | | e | I |
0 2N_ A4 6 & 10 12 14 16 18 20
Time (s)

Zero steady-state offset

Type 1 System Response to a Ramp Command Type 1 System Response to a Ramp Command

Suppose we have a type 1 system

B(s) N 3.4 N 1
K(s)G() = 36) G = 3571 K(s)=z 1+
and we apply a ramp input r(t) =t 10
1
6 -

Ramp input
1 1 4 - -
lim e(t) = lim s - TR GE = Closed-loop
t—o0 50 + K(s)G(s) s 9l step response |
lim ! !
= 1 .-
s=0 1 4 54 ((Ss)) s 0 \ \
1 4 1
1 0 2 3 , 5 6 7 8 9 0
== ime (:
S (s)
Non-zero steady-state error. Constant steady-state offset
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Type 1 System Response to a Ramp Command Type 1 System Response to a Parabolic Command

Suppose we have a type 1 system

34 1/, .1 _ B(s)
G = oy K@= (1+7) K(0(6) = 22
10 and we apply a parabolic input r(t) = ¢*
2
]| | R(S) = ;
6 | —
Ramp input S
41 ~ Closed-loop
\ Error step response
9l e presp i
0 — \ \ \ \ \ \ \
0 1 2 3 4 5 6 7 8 9 10
Time (s)

Constant steady-state offset
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Type 1 System Response to a Parabolic Command Type 1 System Response to a Parabolic Command

Suppose we have a type 1 system 50

SA(s) 401 B

| Parabolic input
2 30
R(s) = 3 !
The error is 20 - n
1 9 Closed-loop step response
E(S) e —
1+ K(s)G(s) s 10 - |
-~ sB(s) 2
a sA(s) 4+ B(s) s ‘ ‘
B(s) 2 05 1 2 3 4 5 6 7 8 9 10

sA(s) + B(s)

®
V]
—
3
@D
—
»
N

Cannot apply final-value theorem because there is more than one pole at 0
— Implies that the error is either unbounded, or oscillates Infinite steady-state offset
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Type 1 System Response to a Parabolic Command Steady-State Errors by System Type

50

40l . Type r(t)=1 r(t)=t r(t)="t>

30 - Parabolic input i 0 _1 00 00

: 1+~
20 |- | 1 0 1 o
Closed-loop step response Error v

10} . 2 0 0 1

Y
0 | | | | | |
0 1 2 3 4 5 6 7 8 9 10 Basic idea: Must have more integrators than the signal you're trying to track

Why not just add hundreds of integrators, and track anything?!
Infinite steady-state offset
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Steady-State Errors by System Type - by the Book Negative Impact of Adding Integrators

The book uses a slightly different notation: 1 . \—q
prt = (jw)
Type r(t)=1 r(t) =t r(t) =t*
Step (position) Ramp (velocity) Parabola (acceleration) 60 S _
0 ! 0o oo T 40 .
1+ K, : E 20 One integrator |
1 0 T = S T
2 0 0 ! 5 ol
K., £ —40p a
—60 L L
0 One 'ntegrator‘ ‘ a
1 i
K, = gl_)n% K(s)G(s) Type 0 /8?” o
K, = lim sK(s)G(s) Type 1 % 180l |
(%]
K, = lim 2K (s)G(s) Type 2 f—‘: 970 | |
) ) N ) ) —360 L L
The book differentiates constants between position, velocity and acceleration. We 107! 10° 10*
just use ~ for all of them. Frequency rad/sec
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Negative Impact of Adding Integrators

Magnitude (dB)
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Negative Impact of Adding Integrators

How do the two systems differ in terms of stability margins?

Magnitude (dB)

Phase (deg)

G(s)

G(s) VS o

80 |-
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0,
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Negative Impact of Adding Integrators
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Negative Impact of Adding Integrators

How do the two systems differ in terms of stability margins?
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Negative Impact of Adding Integrators

How do the two systems differ in terms of stability margins?

How do the two systems differ in terms of stability margins?
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Constant Disturbance Rejection

Constant Disturbance Rejection

G(s)

System response with respect to a disturbance w(t) is:

_ G(s)
B = T xmam "

What are the conditions for zero steady-state offset with respect to a constant
disturbance?

28



Constant Disturbance Rejection Constant Disturbance Rejection

Suppose the system has ¢ integrators, and K has none Suppose the system has q integrators, and K has none
_ B(s) _ B(s)
Gls) = Saa(s) O
The erroris:
N G(s)
B = i keam W
B(s) 1

T s1A(s) + K(s)B(s) s

Then the steady-state error is:

. 1
lim sE(s) = 775y

Integrators in the system do not reject disturbances!

29 29
Integrators in the Controller Integrators in the Controller
Suppose the controller K has r integrators Suppose the controller K has r integrators
~S(s) _ S
K(s) = s"R(s) (s) = s"R(s)
The erroris:

_ B(s) 1

B(s) = s1A(s) + K(s)B(s) s
- B(s)R(s) 1

=% 57s1A(s)R(s) + S(s)B(s) s

The controller's integrators do reject the disturbance:

- One pole at 0 — rejects constant disturbance
- Two poles at 0 — rejects ramp disturbance

- etc
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K(s)=5

- System has an integrator
- Controller doesn't

12

1.5 Y6
R(s)
1 \//\/
0.5 o |
0
0 2 4 8 10
Time (s)

Waterbed Effect

31

K(s)*O.l-ﬁ-%

- System doesn’t have an integrator

- Controller does (PI)
1.5 T T T
Y(s)
/\ R(s)
1
051" B(s) |
W (s)
0 | | / | .
0 2 S~ —1T 6 8 10 12
Time (s)

32

Dynamic Disturbance Rejection

We want to reject ‘complex’ signals.

Consider a sinusoid

or a mix of sinusoids.

r(t) = sin(wt) ,

The rejection of these signals, or the sensitivity to them, is given by the sensitivity

function

! — 1S(jw)|

1+ K(jw)G(jw)

33



Theorem Bode’s Integral Formula

_ K(5)G(s) = K s> — 133.3s + 5926
Assume we have a closed-loop stable system with open-loop unstable poles p;, P (s +1)(s2 + 133.3s + 5926)
¢ = 1,2,...,P and a strictly proper open-loop transfer function K(s)G(s). The

sensitivity function satisfies the condition '

0
oo P o
/ log |S(jw)|dw = 7 ZRe(pi) o
0 i=1 o -5 4
el
2
This is a fundamental limit on how well the system can perform: § -10 4
=
- If we damp noise for some frequencies |S(jw)| < 1, then we must amplify it
|S(jw)| > 1 at others! -15 L L L R
-3 -2 -1 0
- This is called the waterbed effect 10 10 10 10
- Harder to get good disturbance rejection behaviour out of unstable systems Freq
(those with many unstable poles)
K, =0.1 max S(jw) = 0.04dB

2 X
K(s)G(s) = K s? — 133.3s + 5926

s% —133.3s + 5926

(s +1)(s2 + 133.35 + 5926) K($)G(s) = Ko 7357 + 133.35 1 5926)
0 0
) o
=2 S
o -5 4 o -5
© ©
2 2
= 2
S -10F . S -10F
= =
-15¢ R RN SRR R o S SRR RN B -15¢ R IR ERR R o N AR AR ! ]
10° 107 10” 10° 107 107 10” 10°
Freq Freq
K,=1 max S(jw) = 0.4dB K,=2 max S(jw) = 0.8dB



()Gl = K 52— 133.35 + 5926 Robustness:  The farther the ‘nominal’ Nyquist curve is from the —1 point, the
(5)G(s) = Kp (s + 1)(s% + 133.35 + 5926) more likely the real system will be stable.
0 7 T Margins” measure how far your system is from unstable
e =
o - Gain margin
o .
o -5 | - Phase margin
3 - Delay margin
c
< -10 ] Steady-state offset
=
15 - ‘ » » L] - Need to have as many integrators in your controller as are in the signal to track
B - L ‘““‘_2 —— “““_1 i ‘““‘0 i | reject if you want zero steady-state error
10 10 10 10 10
Freq Waterbed effect
- There is a fundamental limit to how well a controller can work
K,=5 max S(jw) = 2dB

- Cannot improve noise rejection / tracking at all frequencies
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